skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sangar, Yaman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manoomin, the Ojibwe word for Northern Wild Rice, is a culturally significant food source native to the Western Great Lakes region of North America. For generations, Manoomin stewardship has been central to Ojibwe culture and identity, harvested using traditional methods which respect and enrich its growth. Recent years have shown a decline in Manoomin’s natural occurrence due to land-use change and global warming. As part of a broader conservation effort, our team has collaborated with Tribal partners to build Makak, a low-cost microclimate sensor that monitors factors affecting wild rice to support Tribal sovereignty. This article details our co-design and pilot deployment in collaboration with four partner organizations. Through this work, we share our experiences, and lessons learned from the co-design process with Tribal partners. With this work, we aim to provide insights to other projects that promote Indigenous-centric participatory, collaborative design methods for conservation and environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026
  2. Human studies often rely on wearable lifelogging cameras that capture videos of individuals and their surroundings to aid in visual confirmation or recollection of daily activities like eating, drinking, and smoking. However, this may include private or sensitive information that may cause some users to refrain from using such monitoring devices. Also, short battery lifetime and large form factors reduce applicability for long-term capture of human activity. Solving this triad of interconnected problems is challenging due to wearable embedded systems’ energy, memory, and computing constraints. Inspired by this critical use case and the unique design problem, we developed NIR-sighted, an architecture for wearable video cameras that navigates this design space via three key ideas: (i) reduce storage and enhance privacy by discarding masked pixels and frames, (ii) enable programmers to generate effective masks with low computational overhead, and (iii) enable the use of small MCUs by moving masking and compression off-chip. Combined together in an end-to-end system, NIR-sighted’s masking capabilities and off-chip compression hardware shrinks systems, stores less data, and enables programmer-defined obfuscation to yield privacy enhancement. The user’s privacy is enhanced significantly as nowhere in the pipeline is any part of the image stored before it is obfuscated. We design a wearable camera called NIR-sightedCam based on this architecture; it is compact and can record IR and grayscale video at 16 and 20+ fps, respectively, for 26 hours nonstop (59 hours with IR disabled) at a fraction of comparable platforms power draw. NIR-sightedCam includes a low-power Field Programmable Gate Array that implements our mJPEG compress/obfuscate hardware, Blindspot. We additionally show the potential for privacy-enhancing function and clinical utility via an in-lab eating study, validated by a nutritionist. 
    more » « less
    Free, publicly-accessible full text available November 30, 2025
  3. Wireless communication over long distances has become the bottleneck for battery-powered, large-scale deployments. Low-power protocols like Zigbee and Bluetooth Low Energy have limited communication range, whereas long-range communication strategies like cellular and satellite networks are power-hungry. Technologies that use narrow-band communication like LoRa, SigFox, and NB-IoT have low spectral efficiency, leading to scalability issues. The goal of this work is to develop a communication framework that is energy efficient, long-range, and scalable. We propose, design, and prototype WiChronos, a communication paradigm that encodes information in the time interval between two narrowband symbols to drastically reduce the energy consumption in a wide area network with large number of senders. We leverage the low data-rate and relaxed latency requirements of such applications to achieve the desired features identified above. We design and implement chirp spread spectrum transmitter and receiver using off-the-shelf components to send the narrowband symbols. Based on our prototype, WiChronos achieves an impressive 60% improvement in battery life compared to state-of-the-art LPWAN technologies in transmission of payloads less than 10 bytes at experimentally verified distances of over 4 km. We also show that more than 1,000 WiChronos senders can co-exist with less than 5% collision probability under low traffic conditions. 
    more » « less
  4. The food and drug industry is facing the need to monitor the quality and safety of their products. This has made them turn to low-cost solutions that can enable smart sensing and tracking without adding much overhead. One such popular low-power solution is backscatter-based sensing and communication system. While it offers the promise of battery-less tags, it does so at the cost of a reduced communication range. In this work, we propose PACT - a scalable communication system that leverages the knowledge asymmetry in the network to improve the communication range of the tags. Borrowing from the backscatter principles, we design custom PACT Tags that are battery-less but use an active radio to extend the communication range beyond standard passive tags. They operate using the energy harvested from the PACT Source. A wide-band Reader is used to receive multiple Tag responses concurrently and upload them to a cloud server, enabling real-time monitoring and tracking at a longer range. We identify and address the challenges in the practical design of battery-less PACT Tags using an active radio and prototype them using off-the-shelf components. We show experimentally that our Tag consumes only 23μJ energy, which is harvested from an excitation Source that is up to 24 meters away from the Tag. We show that in outdoor deployments, the responses from an estimated 520 Tags can be received by a Reader concurrently while being 400 meters away from the Tags. 
    more » « less